Clinical Update

Vol. 31, No. 8

Endodontic flare-ups: incidence, etiology, prevention, diagnosis, and treatment
Lieutenant Commander Howard Van Ness, DC, USN and Captain Carol Diener Weber, DC, USN

Introduction
Flare-ups are a complication of endodontic treatment, defined as an acute exacerbation of pulpal or periradicular pathosis after the initiation or continuation of root canal treatment.1 According to Walton and Fouad, signs and symptoms of flare-ups include an increase in pain with or without swelling that occurs within a few hours to days after endodontic treatment. The pain is of such severity that the patient contacts the dentist.2 The purpose of this update is to describe the incidence, etiology, prevention, and treatment of endodontic flare-ups.

Incidence of endodontic flare-ups
Studies have shown that flare-ups occur in only a small percentage of cases, with values varying between 1.58% to 15.7%.3-4 Recently, a meta-analysis determined the incidence to be an average of 8.4%.5 Although the occurrence of flare-ups is low, its effects often have a severe impact on the patient, dentist, and the dental office staff. When the dentist understands the etiology of flare-ups, a) preventative measures can be taken to avoid them, b) a proper diagnosis can be made when they do occur and c) the appropriate treatment can be promptly provided.

Etiology of endodontic flare-ups
There are many suggested causes for flare-ups. They can be divided into host factors and treatment factors.

Host factors
- Preoperative pain or swelling2,3
- Necrotic pulp2,6
- Periapical lesion3,6,7
- Bacteria8
- Gender: female > male2,9
- Molar teeth7
- Mandibular teeth10
- Anxiety11
- Percussion sensitivity12

Treatment factors
- Overinstrumentation13
- Extrusion of debris, bacterial products, irrigants or medicaments14
- Extrusion of obturation materials15
- Hyperocclusion16
- Inadequate debridement or missed canal

The causes of flare-ups are typically multifactorial.

Prevention of endodontic flare-ups
A primary goal of endodontic therapy is the removal of bacteria and the infected pulp. Complete debridement of inflamed or infected tissue, bacteria and bacterial by-products is essential for preventing flare-ups. It is imperative that all chemomechanical debridement and obturation of the root canal be done within the confines of the canal. Additional steps for preventing flare-ups include the use of an interappointment medicament, occlusal reduction, antibiotics, and analgesics.

Intracanal medicament
The most commonly used intracanal medicament is calcium hydroxide. It has been shown to hydrolyze bacterial materials associated with inflammation.16 In necrotic cases, using a 7-day intracanal dressing of calcium hydroxide demonstrated a significantly reduced incidence of postobturation pain and swelling when compared to those cases treated in a single visit or those in two visits without any intracanal dressing.17 In order to eliminate bacteria which may have survived chemomechanical instrumentation, calcium hydroxide should remain in the canal system for at least 7 days.18

Occlusal reduction
Patients who present with a profile of preoperative pain, percussion sensitivity, vital pulp and/or absence of periapical radiolucency are more likely to benefit from occlusal reduction.12 Judicious occlusal reduction of the tooth’s functional cusps, as opposed to indiscriminate “flat-planning” of the natural crown, will help prevent postoperative pain in these patients while preserving natural tooth structure for the restoration.

Antibiotics
Historically, antibiotics have been administered in the hope that they will decrease pain. However, evidence in the literature does not support this practice. One study showed that patients with localized apical pain or swelling generally recover quickly with local treatment and do not benefit from supplemental penicillin administration.19 Other studies have shown that penicillin does not reduce pain, percussion sensitivity, swelling, or the number of analgesics needed postoperatively.20,21

Analgesics
The use of NSAIDs has been shown to be effective in the prevention of endodontic flare-ups. Incidence of flare-ups may be reduced by administering pretreatment and posttreatment analgesics such as ibuprofen.22

Diagnosis of endodontic flare-ups
When an endodontic patient returns to the clinic in pain, the initial phase of treatment must include a thorough examination and diagnosis. Always listen to the patient’s chief complaint, and recognize that increased intensity of pain, assessed using a Visual Analog Scale, is indicative of a flare-up. Conduct a thorough review of the medical and dental history. A comprehensive clinical examination should then be performed to locate the source of discomfort and to evaluate the presence of swelling or other signs of infection. Carefully assess if the previous diagnosis was correct and if the previous treatment was adequate. Rule out whether or not the cause is of odontogenic origin and if there is another tooth involved. Additional radiographs may be necessary.

Treatment protocols
Definitive treatment should begin once the diagnosis has been made. If debridement of the root canal was incomplete, or uncertain, it is imperative to reenter the tooth in order to completely re-
move the contents of the canal. Examples of incomplete debride-
ment may include a missed canal, inadequate access, or
shortness of working length. Many effective preventive meth-
ods can also be utilized. Occlusion should be evaluated and
reduction may be indicated if the patient fits the aforementioned
profile. Occlusal reduction may also be indicated to decrease
pain in patients who have developed percussion sensitivity
postoperatively. Even if occlusal reduction was previously
completed, in cases of acute periapical abscess, the tooth may
have regained occlusal contact.

A clinical study revealed that a combined regimen of 600 mg
ibuprofen with 1000 mg acetaminophen was more effective than
ibuprofen alone for management of postoperative endodontic
pain. A prescription alternating every three hours between
400-600 mg ibuprofen and 325-650 mg acetaminophen is
effective. Keep in mind that the maximum adult daily dosage
of acetaminophen is 4000 mg, while ibuprofen is 3200 mg.

In the presence of swelling, an incision and drainage procedure
may be done to allow evacuation of purulence, bacteria and
toxins. It also allows the release of periapical tissue pres-
sure, resulting in significant pain relief.

Summary

Although endodontic flare-ups are uncommon, the impact
on the patient and the busy dental practice is significant. Under-
standing the contributing factors will allow the dentist to de-
cide if the emergency is best managed pharmacologically or
with further dental treatment. Identifying patients and situ-
ations prone to result in flare-ups can help the practitioner plan
for possible follow-ups and eliminate the disruptive unsched-
uled visit. A clinical reassessment of the flare-up patient
should consider the possibility of a previous misdiagnosis.
Utilizing proper preventative measures and choosing the correct
treatment plan for flare-ups will improve patient comfort,
restore patient confidence in their provider and help the dentist
build a successful practice.

References

1. American Association of Endodontists. Glossary of endodon-
tic terms, 7th ed. Chicago: American Association of Endodon-
tists; 2003.
2. Walton R, Fouad A. Endodontic interappointment flare-ups: a
3. Imura N, Zuolo ML. Factors associated with endodontic
382-6.
associated with clinical factors during and after root canal ther-
384-7.
5. Tsesis I, Faivishovsky V, Fuss Z, Zukerman O. Flare-ups
after endodontic treatment: a meta-analysis of literature. J
6. Mor C, Rotstein I, Friedman S. Incidence of interappointment
7. Iqbal M, Kurtz E, Kohli M. Incidence and factors related to
flare-ups in a graduate endodontic programme. Int Endod J.
2009 Feb;42(2):99-104.
8. Chavez de Paz Villanueva LE. Fusobacterium nucleatum in
9. Ng YL, Glennon JP, Setchell DJ, Gulabivala K. Prevalence of
and factors affecting post-obturation pain in patients undergoing
10. Alacam T, Tinaz AC. Interappointment emergencies in teeth
11. Watkins CA, Logan HL, Kirchner HL. Anticipated and experi-
2002 Jan;133(1):45-54.
12. Rosenberg PA, Babick PJ, Schertzer L, Leung A. The effect of
15. Harrison JW, Baumgartner JC, Svec TA. Incidence of pain
associated with clinical factors during and after root canal therapy.
16. Safavi KE, Nichols FC. Alteration of biological properties of
17. Ghoddusi J, Javidi M, Zarrabi MH, Bagheri H. Flare-ups inci-
dence and severity after using calcium hydroxide as intracanal dress-
18. Sjogren U, Figdor D, Spangberg L, Sundqvist G. The antimicro-
bial effect of calcium hydroxide as a short-term intracanal dressing.
19. Fouad AF, Rivera EM, Walton RE. Penicillin as a supplement in
20. Nagle D, Reader A, Beck M, Weaver J. Effect of systemic peni-
21. Henry M, Reader A, Beck M. Effect of penicillin on postopera-
tive endodontic pain and swelling in symptomatic necrotic teeth. J
for treating post-endodontic pain: a systematic review. Endodontic
Topics. 2002;3:3.
23. Menhinick KA, Gutmann JL, Regan JD, Taylor SE, Buschang
PH. The efficacy of pain control following nonsurgical root canal
therapy using ibuprofen or a combination of ibuprofen and acetamino-
phen in a randomized, double-blind, placebo-controlled study. Int

Lieutenant Commander Van Ness is an endodontic resident at
the Naval Postgraduate Dental School. Captain Weber is a staff mem-er of the Endodontics Residency Program at the Naval Postgraduate
Dental School, Bethesda, MD.

The views expressed in this article are those of the authors and do
not necessarily reflect the official policy or position of the Depart-
ment of the Navy, Department of Defense, or the U.S. Government.